Points Covered an Odd Number of Times by Translates
نویسنده
چکیده
Let T be a fixed triangle and consider an odd number of translated copies of T in the plane. We show that the set of points in the plane that belong to an odd number of triangles has an area of at least half of the area of T . This result is best possible. We resolve also the more general case of a trapezoid and discuss related problems.
منابع مشابه
Covering space with convex bodies
1. A few years ago Rogers [1] showed that, if K is any convex body in n-dimensional Euclidian space, there is a covering of the whole space by translates of K with density less than nlogn+nloglogn+5n, provided n > 3. However the fact that the covering density is reasonably small does not imply that the maximum multiplicity is also small. In the natural covering of space by closed cubes, the den...
متن کاملOn the Odd Area of Planar Sets
The main result in the paper is a construction of a simple (in fact, just a union of two squares) set T in the plane with the following property. For every > 0 there is a family F of an odd number of translates of T such that the area of those points in the plane that belong to an odd number of sets in F is smaller than .
متن کاملRecognition by prime graph of the almost simple group PGL(2, 25)
Throughout this paper, every groups are finite. The prime graph of a group $G$ is denoted by $Gamma(G)$. Also $G$ is called recognizable by prime graph if for every finite group $H$ with $Gamma(H) = Gamma(G)$, we conclude that $Gcong H$. Until now, it is proved that if $k$ is an odd number and $p$ is an odd prime number, then $PGL(2,p^k)$ is recognizable by prime graph. So if $k$ is even, the r...
متن کاملWhich Crossing Number is it, Anyway?
A drawing of a graph G is a mapping which assigns to each vertex a point of the plane and to each edge a simple continuous arc connecting the corresponding two points. The crossing number of G is the minimum number of crossing points in any drawing of G. We define two new parameters, as follows. The pairwise crossing number (resp. the odd-crossing number) of G is the minimum number of pairs of ...
متن کاملMultiple point of self-transverse immesions of certain manifolds
In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American Mathematical Monthly
دوره 121 شماره
صفحات -
تاریخ انتشار 2014